PHP Abstract Classes & Interfaces
Handbook

1) Abstract Classes — Partially Implemented Blueprints
Definition
An abstract class:

e Cannot be instantiated directly.

e May contain fully implemented methods and abstract methods.

e May declare properties.

e May define constructors.

e Used to share common code while forcing subclasses to implement certain methods.

Syntax

abstract class ClassName {
abstract public function mustImplement(): void; // No body
public function alreadyDone(): void {
echo "This works right away!";

Example

abstract class Shape {
public function __construct(
protected string Scolor = 'black'

) {}

abstract public function area(): float; // Force child to

implement

public function describe(): string {
return "A {Sthis->color} shape";

class Circle extends Shape {
public function
'black') {
parent::__construct(Scolor);
}
public function area(): float {
return pi() * Sthis->radius ** 2;

Scircle = new Circle(5, 'red');
echo Scircle->describe(); // A red shape
echo $circle->area(); // 78.53...

__construct(private float Sradius, string Scolor =

Visibility with Abstract Methods

abstract class Example {

abstract public function doSomething(): void;

in child

abstract protected function helper(): void;

protected in child

public function normalMethod(): void {}

implemented

}

// Must be public

// Must be

// Fully

Rules

e An abstract method cannot have a body.

e A child class must implement all abstract methods, keeping the same visibility or
making it less restrictive (protected — public allowed).

e You can extend only one abstract class (single inheritance).

(74 Use Abstract Classes When:

e You have shared logic + enforced methods.
e You need to store state in properties.

e You want a base template with partial behavior.

2) Interfaces — Pure Contracts
Definition
An interface:

e Cannot have properties.

e Cannot have constructors.

e All methods are public by default.

e No implementation, only signatures.

e Classes can implement multiple interfaces.

Syntax

interface InterfaceName {
public function doSomething(): void; // Always public

Example

interface Resizable {
public function resize(float Sfactor): void;

interface Drawable {
public function draw(): void;

class Rectangle implements Resizable, Drawable {
public function __construct(private float Swidth, private float

Sheight) {}

public function resize(float Sfactor): void {
Sthis->width *= Sfactor;
Sthis->height *= Sfactor;

}

public function draw(): void {
echo "Drawing rectangle of {Sthis->width} x

{$this->height}\n";
}

Srect = new Rectangle(10, 5);
Srect->draw();
Srect->resize(2);
Srect->draw();

Rules
e No properties.

e All methods must be implemented in the concrete class.

e Supports multiple inheritance (many interfaces).

{74 Use Interfaces When:

e You want to define capabilities.

e You want unrelated classes to share the same API contract.

e You want loose coupling (for Dependency Injection).

3) Abstract Class vs Interface

Feature Abstract Class

Properties allowed "4 Yes
Method bodies allowed [74 Yes
Constructors allowed 4 Yes
Visibility modifiers "4 Yes
Multiple inheritance X No

Purpose Template + shared
code

Interface

X No
X No
X No
¥ No (all public)
72 Yes

Contract only

4) Combining Them
You can combine them for powerful designs.

interface Storable {
public function save(): void;

abstract class Model implements Storable {
public function __construct(protected string Stable) {}
abstract public function save(): void;

class User extends Model {
public function __construct(private string Sname) {
parent::__construct('users');
}
public function save(): void {
echo "Saving {Sthis->name} to {Sthis->table}\n";

Suser = new User('Ada');
Suser->save();

5) Design Decision Flow
e Do | need to share code + enforce rules? — Use Abstract Class.
e Do | just want to enforce a contract? — Use Interface.

e Do | want multiple inheritance of behavior? — Use Interfaces, or Traits + Interfaces.

6) Quick Reference
e Abstract method — no body, must be implemented in subclass.
e |Interface method — no body, public only, must be implemented in concrete class.

e Abstract class can mix implemented & unimplemented methods.

e Interface = multiple inheritance, Abstract = single inheritance.
e You can have:

o Interface + Abstract Class

o Interface + Trait

o Multiple Interfaces

o Abstract Class implementing Interface

	PHP Abstract Classes & Interfaces Handbook
	1) Abstract Classes — Partially Implemented Blueprints
	Definition
	Syntax
	Example
	Visibility with Abstract Methods
	Rules

	2) Interfaces — Pure Contracts
	Definition
	Syntax
	Example
	Rules

	3) Abstract Class vs Interface
	4) Combining Them
	5) Design Decision Flow
	6) Quick Reference

